
Package SRC
Version 4.0.0-trunk-x86_64-r60768

Christoph Schulz
email: fli4l@kristov.de

The fli4l-Team
email: team@fli4l.de

October 1, 2022

mailto:fli4l@kristov.de
mailto:team@fli4l.de

Contents

1. Documentation For Package SRC 3
1.1. SRC - The fli4l Buildroot . 3

1.1.1. The Sources - An Overview . 3
1.1.2. Compile A Program For fli4l . 4
1.1.3. Testing Of A Compiled Program . 7
1.1.4. Debugging Of A Compiled Program . 7
1.1.5. Informations On The FBR . 10
1.1.6. Changing The FBR Configuration . 11
1.1.7. Updating The FBR . 12
1.1.8. Integrating Own Programs Into The FBR 13

A. Appendix For Package SRC 14

2

1. Documentation For Package SRC

marklabelbuildroot

1.1. SRC - The fli4l Buildroot
This chapter is mainly of interest for developers, who want to compile binaries or the Linux
kernel for the fli4l. If you only want to use flil4 as a router and do not offer packages for the
fli4l needing own binaries, you may skip this chapter completely.

In general, for compiling program packages for the fli4l a Linux system is required. Com-
pilation under other operating systems (Microsoft Windows, OS X, FreeBSD, etc.) is not
supported.

The requirements for a Linux system for fli4l development are as follows:

• GNU gcc and g++ in version 2.95 or higher

• GNU gcc-multilib (depending on your host system)

• GNU binutils (contains bind and other necessary programs)

• GNU make in version 3.81 or higher

• GNU bash

• libncurses5-dev for fbr-make *-menuconfig (depending on your host system)

• The programs sed, awk, which, flex, bison and patch

• The programs makeinfo (package texinfo) and msgfmt (package gettext)

• The programs tar, cpio, gzip, bzip2 and unzip

• The programs wget, rsync, svn and git

• The programs perl and python

In the following, characters printed bold represent keyboard input, the ê-character stands
for the Enter key on your keyboard and executes entered commands.

1.1.1. The Sources - An Overview
In the directory src you will find the following subdirectories:

3

1. Documentation For Package SRC

Directory Content
fbr In this folder there is a custom build system based on the

buildroot for uClibc (currently in version 0.9.33.2). FBR
stands for “flil4-Buildroot”. It is thus possible, to compile
all programs used on fli4l (kernel, libraries and applications)
anew.

fli4l This directory contains the fli4l specific sources for packages
sorted by their names. All sources that are included in this
subdirectory, were either written specifically for use with
fli4l or are at least strongly adapted.

cross This directory contains scripts that create the cross-
compilers necessary for compiling mkfli4l for various Plat-
forms.

1.1.2. Compile A Program For fli4l
In the subdirectory “fbr” a script fbr-make exists which controls the compilation of all the
programs from the basic packages for fli4l. This script takes care of downloading and compiling
all required binaries for fli4l. The script will save files in the directory ˜/.fbr, if it does not
yet exist, it will be created. (The directory may be changed by using the environment variable
FBR_BASEDIR, see below.)

Note: During the compilation process much space is needed (currently around 900 MiB
for the downloaded archives and almost 30 GiB for the intermediate results and the resulting
compiled files). Hence, make sure to have enough space under ˜/.fbr! (Alternatively, you
may also use the FBR_TIDY option, see below.)

The directory structure below ˜/.fbr is as follows:

Directory Content
fbr-<branch>-<arch> The uClibc buildroot is unpacked here. <branch> stands

for the development branch the FBR is derived from, in this
case (i.e. trunk). If the origin of the FBR is an unpacked
src package, fbr-custom will be used. <arch> reflects the
processor architecture in use (i.e. x86 or x86_64). More
concerning this directory can be found below.

dl Here the downloaded archives are stored.
own Here own FBR packages which should be compiled can be

stored.

Under the Buildroot directory ˜/.fbr/fbr-<branch>-<arch>/buildroot the following di-
rectories are of interest:

4

1. Documentation For Package SRC

Directory Content
output/sandbox In this directory a subdirectory exists for each FBR package

that holds the files of the package after being compiled. In
the directory output/sandbox/<package>/target the files
for the fli4l router can be found in this case. In the direc-
tory output/sandbox/<package>/staging files needed for
building other FBR packages requiring this FBR package
can be found.

output/target In this directory all compiled programs for the fli4l-router
are stored. This directory mirrors the directory structure on
the fli4l router. By the help of chroot you can change to
this directory and try the programs.1

General Settings

The operation of fbr-make can be influenced by various environment variables:

Variable Description
FBR Specifies the path to the FBR explicitely. Per default the

path ˜/.fbr/fbr-<branch>-<arch> (see above) is used.
FBR_BASEDIR explicitely specifies the base path to the FBR. As a default

the ˜/.fbr (see above) will be used. This variable will be
ignored if the environment variable FBR is set.

FBR_DLDIR Specifies the directory containing the source archives. Per
default the path ${FBR}/../dl (i.e. ˜/.fbr/dl) will be
used.

FBR_BRANCH Specifies explicitly the name of the branch under which the
packages below ˜/.fbr (see above) are built. This variable
will be ignored if the environment variable FBR is set.

FBR_CATEGORY Specifies explicitly the name of the category under which the
packages below ˜/.fbr (see above) are built. This variable
will be ignored if the environment variable FBR is set.

FBR_OWNDIR Specifies the directory holding the own packages. Per default
the path ${FBR}/../own (i.e. ˜/.fbr/own) will be used.

FBR_TIDY if this variable is set to “y” intermediate results while com-
piling the FBR packages will be deletetd immediately af-
ter their installation to the directory output/target. This
saves a lot of space and is always recommended if you do
not feel the urge to have a look at output/build/... af-
ter the build process. If this variable ’contains the value “
k’, only the intermediate results in the various Linux ker-
nel directories are removed, because this saves a lot of space
without losing any functionality. All other assignments (or if
the variable is missing entirely) ensure that all intermediate
results are kept.

1This is bound to some preconditions, see the paragraph “Testing Of A Compiled Program” (Page 7).

5

1. Documentation For Package SRC

Variable Description
FBR_ARCH This variable specifies the processor architecture for which

the FBR (or FBR packages) should be built. If it is missing,
x86 will be used. The supported architectures can be found
below.

The FBR currently supports the following architectures:

Architecture Description
x86 Intel x86-Architecture (32-Bit), also known as IA-32.
x86_64 AMD x86-64-Architecture (64-Bit), also called Intel 64 or

EM64T by Intel.

Compilation Of All FBR Packages

If executing fbr-make with the argument world, it may last several hours to download and
compile all source archives, depending on the computer and Internet connections used. 2

Compiling The Toolchain

If executing fbr-make with the argument toolchain, all FBR packages needed for building the
fli4l binary programs will be downloaded and compiled (Compiler, Binder, uClibc-library etc.).
Normally this command is not needed, because all FBR packages depend on the toolchain and
thus it has to be downloaded and build anyway.

Compiling A Single FBR Package

If you only want to compile a certain FBR package (i.e. the programs of an OPT developed
yourself), you may transfer the name of one or more FBR packages to the fbr-make pro-
gram (for example fbr-make openvpn to download and compile the OpenVPN programs). All
dependencies will also be downloaded and compiled.

Recompilation Of A Single FBR Package

If you like to compile a FBR package again (for whatever reason), you first need to remove
the information on the FBR about the previous compilation process. For this purpose use the
command fbr-make <package>-clean (eg fbr-make openvpn-clean). In this case informa-
tions about all dependencies for the package are also reset causing their recompilation with
the next fbr-make world as well.

Recompiling All FBR Packages

If you like to recompile the entire FBR (eg because you want to use it as a benchmark program
for your new high-end developer system ;-), you can use the command fbr-make clean and

2Downloading of source archives is of course done only once as long as you don’t update the FBR and thus
need new package versions and source archives.

6

1. Documentation For Package SRC

remove all artifacts that have been generated during the last FBR build. You will have to
confirm this action. 3 This is also useful to free used disk space.

1.1.3. Testing Of A Compiled Program
If a program has been compiled with fbr-make it may also be tested on the development
machine. Such a test will of course only work if the processor architecture of the developer
machine matches the processor architecture the fli4l programs were compiled for. (It is not
possible, for example, to run x86_64 flil4 programs on a x86 operating system.) If this condition
is met, change to the fli4l target directory with

chroot ~/.fbr/fbr-<branch>-<arch>/buildroot/output/target /bin/shê

and test the compiled program(s) there immedeately. Please note that executing chroot needs
administrator rights and thus you have to use sudo or su, depending on preference and system
configuration! In addition you will have to compile the FBR package busybox (via fbr-make
busybox), to have a working shell in the chroot environment. A small example:

$ sudo chroot ~/.fbr/fbr-trunk-x86/buildroot/output/target /bin/shê

Passwort:(Your password)ê

BusyBox v1.22.1 (fli4l) built-in shell (ash)
Enter 'help' for a list of built-in commands.

lsê

THIS_IS_NOT_YOUR_ROOT_FILESYSTEM mnt
bin opt
dev proc
etc root
home run
img sbin
include share
lib sys
lib32 tmp
libexec usr
man var
media windows
bc --versionê

bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
echo "42 - 23" | bcê

19
#

1.1.4. Debugging Of A Compiled Program
In case of problems with compiled fli4l programs (crashes) you have the option to analyze the
state of the program immediately before the crash (also called “post-mortem debugging”). To
do so, activate DEBUG_ENABLE_CORE=’yes’ in the configuration of the base package. If case of

3The whole directory ˜/.fbr/fbr-<branch>-<arch>/buildroot/output will be removed.

7

1. Documentation For Package SRC

a crash a memory dump is generated in /var/log/dumps/core.<PID>. “PID” is the process
ID of the crashed process. You may analyze the state of the program on a Linux machine
with a fully compiled FBR as described below. The following example to be analyzed is the
program /usr/sbin/collectd, which was terminated with a SIGBUS. The dump was stored
in /tmp/core.collectd.
fli4l@eisler:~$.fbr/fbr-trunk-x86/buildroot/output/host/usr/bin/i586-linux-gdbê

GNU gdb (GDB) 7.5.1
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-unknown-linux-gnu --target=i586-buildr
oot-linux-uclibc".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
(gdb) set sysroot /project/fli4l/.fbr/fbr-trunk-x86/buildroot/output/targetê

(gdb) set debug-file-directory /project/fli4l/.fbr/fbr-trunk-x86/buildroot/outpu
t/debugê

(gdb) file /project/fli4l/.fbr/fbr-trunk-x86/buildroot/output/target/usr/sbin/co
llectdê

Reading symbols from /project/fli4l/.fbr/fbr-trunk-x86/buildroot/output/target/u
sr/sbin/collectd...Reading symbols from /project/fli4l/.fbr/fbr-trunk-x86/buildr
oot/output/debug/.build-id/8b/28ab573be4a2302e1117964edede2e54ebbdbf.debug...don
e.
done.
(gdb) core /tmp/core.collectdê

[New LWP 2250]
[New LWP 2252]
[New LWP 2259]
[New LWP 2257]
[New LWP 2255]
[New LWP 2232]
[New LWP 2235]
[New LWP 2238]
[New LWP 2242]
[New LWP 2244]
[New LWP 2245]
[New LWP 2231]
[New LWP 2243]
[New LWP 2251]
[New LWP 2248]
[New LWP 2239]
[New LWP 2229]
[New LWP 2249]
[New LWP 2230]
[New LWP 2247]
[New LWP 2233]
[New LWP 2256]
[New LWP 2236]
[New LWP 2246]
[New LWP 2240]

8

1. Documentation For Package SRC

[New LWP 2241]
[New LWP 2237]
[New LWP 2234]
[New LWP 2253]
[New LWP 2254]
[New LWP 2258]
[New LWP 2260]
Failed to read a valid object file image from memory.
Core was generated by `collectd -f'.
Program terminated with signal 7, Bus error.
#0 0xb7705f5d in memcpy ()

from /project/fli4l/.fbr/fbr-trunk-x86/buildroot/output/target/lib/libc.so.0
(gdb) backtraceê

#0 0xb7705f5d in memcpy ()
from /project/fli4l/.fbr/fbr-trunk-x86/buildroot/output/target/lib/libc.so.0

#1 0xb768a251 in rrd_write (rrd_file=rrd_file@entry=0x808e930, buf=0x808e268,
count=count@entry=112) at rrd_open.c:716

#2 0xb76834f3 in rrd_create_fn (
file_name=file_name@entry=0x808d2f8 "/data/rrdtool/db/vm-fli4l-1/cpu-0/cpu-i

nterrupt.rrd.async", rrd=rrd@entry=0xacff2f4c) at rrd_create.c:727
#3 0xb7683d7b in rrd_create_r (

filename=filename@entry=0x808d2f8 "/data/rrdtool/db/vm-fli4l-1/cpu-0/cpu-int
errupt.rrd.async", pdp_step=pdp_step@entry=10, last_up=last_up@entry=1386052459,

argc=argc@entry=16, argv=argv@entry=0x808cf18) at rrd_create.c:580
#4 0xb76b77fd in srrd_create (

filename=0xacff33f0 "/data/rrdtool/db/vm-fli4l-1/cpu-0/cpu-interrupt.rrd.asy
nc",

pdp_step=10, last_up=1386052459, argc=16, argv=0x808cf18) at utils_rrdcreate
.c:377
#5 0xb76b78cb in srrd_create_thread (targs=targs@entry=0x808bab8)

at utils_rrdcreate.c:559
#6 0xb76b7a8f in srrd_create_thread (targs=0x808bab8) at utils_rrdcreate.c:491
#7 0xb7763430 in ?? ()

from /project/fli4l/.fbr/fbr-trunk-x86/buildroot/output/target/lib/libpthread
.so.0
#8 0xb775e672 in clone ()

from /project/fli4l/.fbr/fbr-trunk-x86/buildroot/output/target/lib/libpthread
.so.0
(gdb) frame 1ê

#1 0xb768a251 in rrd_write (rrd_file=rrd_file@entry=0x808e930, buf=0x808e268,
count=count@entry=112) at rrd_open.c:716

716 memcpy(rrd_simple_file->file_start + rrd_file->pos, buf, count);
(gdb) print (char*) bufê

$1 = 0x808e268 "RRD"
(gdb) print rrd_simple_file->file_startê

value has been optimized out
(gdb) listê

711 if((rrd_file->pos + count) > old_size)
712 {
713 rrd_set_error("attempting to write beyond end of file");
714 return -1;
715 }
716 memcpy(rrd_simple_file->file_start + rrd_file->pos, buf, count);

9

1. Documentation For Package SRC

717 rrd_file->pos += count;
718 return count; /* mimmic write() semantics */
719 #else
720 ssize_t _sz = write(rrd_simple_file->fd, buf, count);
(gdb) list 700ê

695 * rrd_file->pos of rrd_simple_file->fd.
696 * Returns the number of bytes written or <0 on error. */
697
698 ssize_t rrd_write(
699 rrd_file_t *rrd_file,
700 const void *buf,
701 size_t count)
702 {
703 rrd_simple_file_t *rrd_simple_file = (rrd_simple_file_t *)rrd_file->
pvt;
704 #ifdef HAVE_MMAP
(gdb) print *(rrd_simple_file_t *)rrd_file->pvtê

$2 = {fd = 9, file_start = 0xa67d0000 <Address 0xa67d0000 out of bounds>,
mm_prot = 3, mm_flags = 1}

After some “digging”, you will see that an invalid pointer is contained in the rrd_simple_file_t
object (“Address ... out of bounds”). In the further process of debugging, it became clear that
a failed posix_fallocate-call was the culprit for the crash.

It is important to pass all paths fully qualified (/project/...) and to use no “shortcuts”
(i.e. in ˜/...). If you don’t obey this it may happen that gdb will not find the debug
informations for the application and/or for the libraries in use. Due to space reasons debug
informations are not contained directly in the program to be investigated but are saved in
separate files in the directoy ˜/.fbr/fbr-<branch>-<arch>/buildroot/output/debug/.

1.1.5. Informations On The FBR
Displaying Help

Use the command fbr-make help to see what fbr-make can do for you.

Displaying Program Informations

By using the command fbr-make show-versions you can review all FBR packages provided
with version number:

$ fbr-make show-versionsê

Configured packages

acpid 2.0.20
actctrl 3.25+dfsg1
add-days undefined
[...]

Display Of Dependencies On Libraries

With fbr-make links-against <soname> all files in ˜/.fbr/fbr-<branch>-<arch>/buildroot
/output/target linked to a library named soname can be shown. If for example all programs

10

1. Documentation For Package SRC

and libraries should be identified that use libm (Library with mathematical functions) use
fbr-make links-against libm.so.0 because libm.so.0 is the name of the libm library. A
possible output would be:

$ fbr-make links-against librrd_th.so.4ê

Executing plugin links-against
Files linking against librrd_th.so.4
collectd usr/lib/collectd/rrdcached.so
collectd usr/lib/collectd/rrdtool.so
rrdtool usr/bin/rrdcached

In the first column is the package name and in the second the (relative) path to the file that
is linked against the library in question.

To find the library name for a library, you can use readelf like this:

$ readelf -d ~/.fbr/fbr-trunk-x86/buildroot/output/target/lib/libm-0.9.33.2.so |ê

> grep SONAMEê

0x0000000e (SONAME) Library soname: [libm.so.0]

Display Of Version Changes

The command fbr-make version-changes is interesting (only) for fli4l-team developers with
write access to the fli4l SVN repository. It lists all FBR packages whose version has been
modified locally, i.e. those where the version in the working copy differs from the repository
version. This helps the developer to get an overview on updated FBR packages before writing
the changes to the repo. A possible output is:

$ fbr-make version-changesê

Executing plugin version-changes
Package version changes
KAMAILIO: 4.0.5 --> 4.1.1

Here you can see that the package kamailio in FBR was updated from version 4.0.5 to
version 4.1.1.

1.1.6. Changing The FBR Configuration
Reconfiguration Of The FBR

By using fbr-make buildroot-menuconfig it is possible to select the FBR packages to be
compiled. This is useful if you want to compile other FBR packages for the fli4l that are not
enabled by default but are integrated in the uClibc buildroot, or if you want to activate own
FBR packages. On the other other hand global properties of FBR may be changed, such as
the version of the used GCC compiler. On successful exit of the configuration menu, the new
configuration is saved in the directory src/fbr/buildroot/.config.
Please note, however, that such changes of the toolchain configuration are not

officially supported because the resulting binaries will be incompatible with the
official fli4l distribution with a high probability. So if you need binaries for your
own OPT and want to publish this OPT, you should not change the toolchain
settings!

11

1. Documentation For Package SRC

Reconfiguration Of The uClibc Library

With fbr-make uclibc-menuconfig the funcionality of the uClibc library in use may be
changed. On successful exit of the configuration menu, the new configuration is saved to
src/fbr/buildroot/package/uclibc/uclibc.config.
Like in the last paragraph also here applies: A change is most likely not com-

patible with the official fli4l distribution and is thus not supported!

Reconfiguration Of Busybox

With fbr-make busybox-menuconfig the Busybox may be changed in its funcionality. On
successful exit of the configuration menu, the new configuration is saved to src/fbr/buildroot
/package/busybox/busybox-<Version>.config.
Also here applies: A change is most likely not compatible with the official fli4l

distribution and is thus not supported! Adding new Busybox applets causes no
problems as long as you only use the modified Busybox on your own flil4 router
(and not require the users of your OPT to use a Busybox modified in this way).

Reconfiguration Of The Linux Kernel Packages

With fbr-make linux-menuconfig resp. fbr-make linux-<version>-menuconfig the con-
figuration of all activated Kernel packages resp. a specific Kernel package may be changed. On
successful exit of the configuration menu, the new configuration is saved to src/fbr/buildroot
/linux/linux-<version>/dot-config-<arch>. 4

Like in the last paragraph also here applies: A change is most likely not compat-
ible with the official fli4l distribution and is thus not supported! At most, adding
of new modules to the Linux kernel is easy, as long you only use the modified
kernel on your own flil4 router (and not require the users of your OPT to use a
Kernel modified in this way).

1.1.7. Updating The FBR
Each of the commands outlined above is advanced by an an examination of the actuality of the
FBR. If a discrepancy between the sources in which fbr-make is located (unpacked src-package
or SVN-working copy) and the FBR in ˜/.fbr/fbr-<branch>-<arch>/buildroot is detected
the latter will be updated. New FBR packages will be integrated and old, no longer contained
FBR packages will be deleted. The configurations are compared: FBR packages with modified
configuration and all dependent FBR packages will be rebuilt. This ensures that the FBR
on your computer is always equal to the developer’s one (except for your own FBR packages
under ˜/.fbr/own/). However, This also means that changes to the official part of
the Buildroot configuration will be lost with the next update! Therefore it is not
recommended to reconfigure FBR, at least not if you are using src packages instead of a SVN
working copy. (When updating a SVN working copy your local configuration changes and

4This only applies to the standard Kernel. For variants of a Kernel package a diff file will be saved in
src/fbr/buildroot/linux/linux-<version>/linux-<version>_<variante>/dot-config-<arch>.diff in-
stead.

12

1. Documentation For Package SRC

the changes to the SVN repository will be merged and the problem of lost configuration does
not occur.) However, your own FBR packages may be reconfigured easily, without data loss
occuring on an update.

1.1.8. Integrating Own Programs Into The FBR
Compilation of the individual FBR packages is controlled by small Makefiles. If you want to
develop your own FBR packages, you have to create a Makefile and a configuration description
in ˜/.fbr/own/<package>/. How these are constructed and how to write own Makefiles
derived from them is decribed in detail in the documentation for the uClibc Buildroot http:
//buildroot.uclibc.org/downloads/manual/manual.html#adding-packages.

13

http://buildroot.uclibc.org/downloads/manual/manual.html#adding-packages
http://buildroot.uclibc.org/downloads/manual/manual.html#adding-packages

A. Appendix For Package SRC

14

	Package SRC
	Contents
	Documentation For Package SRC
	SRC - The fli4l Buildroot
	The Sources - An Overview
	Compile A Program For fli4l
	Testing Of A Compiled Program
	Debugging Of A Compiled Program
	Informations On The FBR
	Changing The FBR Configuration
	Updating The FBR
	Integrating Own Programs Into The FBR

	Appendix For Package SRC

